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Abstract: Convolutional neural networks (CNNs) have achieved state-of-the-art performance in
numerous aspects of human life and the agricultural sector is no exception. One of the main objectives
of deep learning for smart farming is to identify the precise location of weeds and crops on farmland.
In this paper, we propose a semantic segmentation method based on a cascaded encoder-decoder
network, namely CED-Net, to differentiate weeds from crops. The existing architectures for weeds
and crops segmentation are quite deep, with millions of parameters that require longer training
time. To overcome such limitations, we propose an idea of training small networks in cascade to
obtain coarse-to-fine predictions, which are then combined to produce the final results. Evaluation of
the proposed network and comparison with other state-of-the-art networks are conducted using
four publicly available datasets: rice seeding and weed dataset, BoniRob dataset, carrot crop
vs. weed dataset, and a paddy–millet dataset. The experimental results and their comparisons
proclaim that the proposed network outperforms state-of-the-art architectures, such as U-Net, SegNet,
FCN-8s, and DeepLabv3, over intersection over union (IoU), F1-score, sensitivity, true detection
rate, and average precision comparison metrics by utilizing only (1/5.74 × U-Net), (1/5.77 × SegNet),
(1/3.04 × FCN-8s), and (1/3.24 × DeepLabv3) fractions of total parameters.

Keywords: crops and weeds segmentation; smart farming; convolutional neural network; cascaded
encoder-decoder network; semantic segmentation

1. Introduction

Weeds and pests are the major causes of damage to any agricultural crop. Many traditional
methods are used to control the growth of weeds and pests for obtaining high yields [1]. The major
disadvantages of these methods are environmental pollution and contamination of the crops, which have
hazardous effects on human health. With the advent of advanced technologies, recently robots are
used for selective spraying that targets only weeds, without harming crops [2]. The main challenge
for these autonomous platforms is to identify the precise location of weeds and crops [3]. One of the
major applications of deep learning in smart farming is to enable these robots to detect weeds and to
differentiate them from crops. To automate the agricultural equipment, however, researchers first need
to solve a variety of problems, including classification, tracking, detection, and segmentation.

In these aspects, the agriculture industry is enthusiastically embracing artificial intelligence (AI) into
its practice and overcome challenges such as reductions in the labor force and increasing demand. In peak
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seasons, farmers need to hire expert farmworkers with expertise in agricultural production, for different
tasks including sowing crops, picking fruit, stamping out weeds, and harvesting. Recently, many of these
tasks are performed by robots and weed identification is a major application in computer vision that
assists robots in these tasks. Highly developed discriminative technologies are needed to differentiate
between crops and weeds for practical applications. To this end, we propose here a model for crops and
weeds identification based on semantic segmentation. The datasets used for the relevant experiments are
BoniRob [4], rice weed [5], carrot weed [6], and paddy-millet dataset [7] as shown in Figure 1.
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Figure 1. Crops and weeds segmentation datasets: BoniRob on left, followed by rice seeding weed,
carrot weed, and paddy-millet: red color indicates weed and blue crop.

The proposed cascaded encoder-decoder (CED-Net), shown in Figure 2, consists of four small
encoder-decoder networks divided into two levels. Encoder-decoder networks of each level, are trained
independently either for crops segmentation or for weeds. More specifically, Model-1 and Model-2 are
trained for weeds prediction while Model-3 and Model-4 are trained for the crops. The network was
extended to two levels to extract features at different scales and to provide coarse-to-fine predictions.
The contributions of this work can be summarized as: instead of building a big encoder-decoder
network with millions of parameters, we can implement the same system with small networks in
a cascaded form. The proposed architecture outperforms or is on par with U-Net [8], SegNet [9],
FCN-8s [10], and DeepLabv3 [11] over intersection over union (IoU), F1-score, sensitivity, true detection
rate (TDR), and average precision (AP) comparison metrics on rice seeding and weed, BoniRob,
carrot crop vs. weed and a paddy-millet dataset. The proposed network has significantly fewer
parameters, (1/5.74 ×U-Net), (1/5.77 × SegNet), (1/3.04 × FCN-8s), and (1/3.24 × DeepLabv3) making it
more efficient and applicable to embedded applications in agricultural robots. The pre-trained models,
datasets information, and implementation details are available at https://github.com/kabbas570/CED-
Net-Crops-and-Weeds-Segmentation.
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Model-4 is the crop.

2. Related Work

In recent years, convolutional neural networks (CNNs) have been at the forefront of training
algorithms, and are capable of both visualizing and identifying patterns in images with the minimum
human intervention [12]. This capability has enabled the expansion of CNN’s applications to all
fields of computer vision, including self-driving cars [13], facial recognition [14], stereo vision [15],
medical image processing [16], agriculture [7], and bioinformatics [17].

In agriculture, CNNs have been used to solve a variety of problems. To differentiate between
healthy and diseased plants, [18] proposed a deep learning-based model that is capable of identifying
26 different diseases in 14 crop species. The authors used pre-trained AlexNet [19] and GoogleNet [20]
on a dataset of 54,306 images, to achieve a classification accuracy of greater than 99%. To estimate weed
species and growth stages, [21] presented a method using pre-trained Inception-v3 architecture [22].
Their proposed model is capable of estimating the number of leaves with an accuracy of 70%.

To identify weed locations in leaf-occluded crops, [23] used DetectNet [24]. Their network was
trained on 17,000 annotations of weeds images to identify weeds in cereal fields. The algorithm is 46%
accurate in detecting weeds, however, it is unable to detect overlapping and small weeds. To specify
herbicides for soybean crops, [25] proposed a CNN-based model to identify weeds and classify them
either as grass or broadleaf. A sliding window-based approach was used in [3] for stem detection;
each local window provides information about stem location or a non-stem region. Fuentes et al.
developed an automated diagnosis system for tomato disease detection based on deep neural network,
it also used long-short term memory (LSTM) to provide detailed descriptions of disease symptoms [23].
To obtain location information about weeds for site-specific weed management (SSWM), [5] introduced
a dataset and performed experiments on a SegNet based encoder-decoder network (via transfer
learning) for semantic segmentation that achieved a mean average accuracy as high as 92.7%.

Precise estimation of the stem location of crops or weeds, as well as the total area of coverage,
is crucial to remove weeds either mechanically or by selective spraying. Lottes et al. introduced
a network based on a single encoder and two separate decoders for plant and stem detection [3].
The authors also provided results that achieved by semantic segmentation in terms of the highest
mean average precision of 87.3%. To increase the application of computer vision for agricultural
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benefits, [6] presented a dataset of 60 images for carrot crops and weeds detection. They also provided
the semantic segmentation results in terms of different evaluation metrics like average accuracy,
precision, recall, and F1-score.

Semantic segmentation based weeds and crops identification is the most challenging problem and
needs to be solved for efficient smart farming, where the goal is to assign a separate class label to each
pixel of the image [26]. The most popular deep supervised learning-based models for segmentation
include FCN, SegNet, U-Net, DeepLabv3, ParseNet [27], PSPNet [28], MaskLab [29], TensorMask [30]
and attention-based models include DANet [31], Chen et al. [32], OCNet [33] and, CCNet [34]. However,
CNNs that used encoder (down-sampling)–decoder (up-sampling) structure (such as SegNet, U-Net,
and) or a spatial pyramid pooling module (such as DeepLabv3) are considered as the most promising
candidate for semantic segmentation tasks as they obtain sharp object boundaries or capture the
contextual information at different resolution [35].

FCN is considered as a breaking point for segmentation literature, which is designed to make
dense predictions without any fully connected layer [10]. FCN uses VGG-16 to extract the input
image features. Different variants of FCN (FCN-8s, FCN-16s, and FCN-32s) are available and their
attributes are different in terms of using the intermediate outputs. In contrast, SegNet is a symmetric
encoder-decoder based segmentation network [9] where the encoder uses convolution and pooling
operations to reduce the spatial dimensions of feature maps while storing the index of each extracted
value from each window. The decoder of SegNet performs the up-sampling using stored max-pooling
indices. Another symmetric encoder-decoder architecture is U-Net [8] where the features extraction of
encoder is performed in four stages with two consecutive 3 × 3 convolutions followed by max-pooling
and batch normalization. The bottleneck performs a sequence of two 3× 3 convolutions and feedforward
the feature maps to decoder where it up-samples the feature maps by 2 × 2 convolution and halves
the number of feature maps before concatenating with the encoder. Afterwards, a sequence of two
3 × 3 convolutions are performed and the final segmentation map is generated with 1 × 1 convolutions.
However, DeepLabv3 uses the concept of atrous convolution to adjust the filter’s field-of-view and
atrous spatial pyramid pooling (ASPP) to consider objects at different scales [11].

The proposed CED-Net is designed to perform the semantic segmentation task on crops and weeds
dataset and consists of cascaded encoder-decoder structure. Thus, for experiments and comparisons of
evaluation matrices, we compared the proposed network with FCN-8s, SegNet, U-Net, and DeepLabv3.

3. Proposed Architecture

The proposed network architecture is shown in Figure 2. The overall model training is performed
in two stages. At each level, two models are trained independently. At Level-1, Model-1 is trained for
coarse weed prediction and Model-3 for crop prediction. The predictions of Model-1 and Model-3
are up-sampled, concatenated with corresponding input image size, and used as inputs by Model-2
and Model-4, respectively. Two cascaded networks (Model-1, Model-2) are thus trained for weed
predictions, and the other two (Model-3, Model-4) for crop predictions. In total, then, we have four
such small networks. The section that follows explains the network architecture and training details.

3.1. Spatial Sampling

A custom data generator function f (I1, I2, T1
′, T2

′, T1
′′ , T2

′′ ) is defined for each encoder–decoder
network to match input and output dimensions, and to prepare separate ground truths for crops
and weeds. For Level-1, we used (I1, T1

′) and (I1, T2
′), all images and their corresponding ground

truths were resized to a spatial dimension of 448 × 448. Level-2 models were trained on (I2, T1) and
(I2, T2) with spatial dimensions of 896 × 896. Bilinear interpolation was used in each case to adjust the
spatial dimension of input images and targets as well as for up-sampling the Level-1 outputs for each
encoder-decoder network to match dimensions with the next level. We started to train the networks
with inputs of dimensions 448 × 448 for both weeds and crops as separate targets. At Level-1 two
models were trained independently where for Model-1 the corresponding target was a binary mask of
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weeds and for Model-3 target was a binary mask of crops. If Mi represents the model, then the output
ui for input dimensions I n

2×
n
2

can be defined as:

ui = Mi
(
I n

2×
n
2

)
(1)

At Level-1, {i = 1, 3} and ui is the output of Level-1 and has the same dimension as input (I n
2×

n
2
),

where n = 896. After training Level-1 models, their predictions were up-sampled, denoted by Ui, and
concatenated with the input image (In×n), which was further used as an input for Level-2 models. The
output of Level-2 vn×n, has the dimensions of n × n and expressed as:

vn×n = Mi(Ui−1, In×n) (2)

At Level-2, {i = 2, 4} and Ui−1 is the corresponding output of Level-1.

3.2. Encoder-Decoder Network

The detailed architecture of a single encoder-decoder network is shown in Figure 3. The input for
this small network is an RGB image while the target is a binary mask with the same dimensions as the
input. This network is similar to U-Net, but instead of going very deep, we limited the maximum
number of feature maps to 256. For the encoder, the number of feature maps was increased as {16, 32,
64, and 128} while decreasing the spatial dimensions using 2 × 2 max-pooling [24] with stride = 2
that results in feature maps subsampling by a factor of 2. In the bottleneck, the maximum number of
feature maps was set to 256. For the decoder, the bottleneck feature maps were decreased as {128, 64,
32, and 16} while increasing their spatial dimensions by a factor of 2 through bilinear interpolation.
At each stage of the decoder, the up-sampled feature maps were concatenated with corresponding
feature maps of the encoder, indicated by a horizontal arrow shown in Figure 3.
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Figure 3. A single encoder-decoder network, which is used in the cascaded form in Figure 2.

A rectified linear unit (ReLU) was used as an activation function for each convolutional layer
of encoder, bottleneck, and decoder, whereas for the output layer used sigmoid. Model-1 and
Model-3 encoder–decoder networks have 1,352,881 parameters whereas Model-2 and Model-4 have
1,353,025 parameters. This increment in the number of parameters happens because the input
dimensions for Level-2 (Model-2, Model-4) are 896 × 896 × 4 rather than 896 × 896 × 3 of Level-1



Electronics 2020, 9, 1602 6 of 16

(Model-1, Model-3). The concatenation of up-sampled predictions of Level-1 with input images increases
the input channel of Level-2 by 1. In total, the proposed architecture comprises 5,411,812 parameters.

3.3. Post-Processing

As a post-processing step, the outputs of Level-2 are combined by concatenating their predictions,
as shown in Figure 2 and the final output is then mapped onto the input images. To differentiate
between crops and weeds, we assigned red color to weeds and blue color to crops for all four datasets.
Background pixels were kept the same as in the original input image.

3.4. Network Training

For each target (i.e., either weed or crop), network training was performed in two stages. In the
first phase, Level-1 models (Model-1 and Model-3) were trained independently to produce coarse
outputs. Level-2 models (Model-2 and Model-4) were trained in the second phase by utilizing the
predictions from Level-1 models as initialization in a concatenated form with the input image.

All four models were trained using Adam optimization [25], with β1 = 0.9 and β2 = 0.99,
learning rate = 0.0001 with a batch size = 2. A custom loss function was defined in terms of dice
coefficient [26],

Loss = 1−
[

2 × (Target ∩ Prediction)
(Target + Prediction)

]
(3)

4. Evaluation Metrics

To measure and compare the quantitative performance of the proposed network, different
evaluation measures such as dice coefficient/F1-score, Jaccard similarity (JS)/intersection over Union
(IoU), sensitivity/recall, true detection rate (TDR), and average precision (AP) were measured. These
metrics were computed by identifying the variables true positive (TP), true negative (TN), false positive
(FP), and false-negative (FN) by calculating the confusion matrix between the prediction and the
ground truth. The expressions for IoU, recall, TDR, and precision are defined as:

IoU =
TP

(TP + FN + FP)
(4)

Recall =
TP

(TP + FN)
(5)

TDR = 1−
FN

(TP + FN)
(6)

Precision =
TP

(TP + FP)
(7)

F1-score is computed from the harmonic mean of precision and recall and expressed as:

F1 _ Score =
(2× Precision×Recall)
(Precision + Recall)

(8)

The average precision is calculated for the paddy-millet dataset using 11-points interpolation [27],
the maximum precision values (Pinterp(R)) are found at a set of 11 equally spaced recall values [0, 0.1,
0.2, ... 1] and by averaging them we calculated the AP11, as given by:

AP11 =
1

11

∑
R∈{0,0.1,0.2...0.9,1}

Pinterp(R) (9)

where
Pinterp(R) = max

R̃:R̃>R
P
(
R̃
)

(10)
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Therefore, the average precision is obtained by considering only the maximum precision values
Pinterp(R) whose recall values are greater than R. The mean average precision (mAP) is simply the
average of AP over all classes (rice and millet) and expressed as:

mAP =
1
N

N∑
i=1

APi (11)

5. Datasets

To evaluate and compare the proposed model, we used four different publicly-available datasets
that are related to the identification of crops and weeds for smart farming. For each dataset, the goal is
to perform a pixel-wise prediction of crops and weeds. Table 1 summarizes the details of each dataset
and distribution of data for training, validation, and testing.

Table 1. Dataset distribution for training, validation, and testing.

Dataset Total Images Training Validation Testing

Rice seeding and weed 224 160 20 44
BoniRob 492 400 30 62

Carrot crop vs. weed 60 45 5 10
Paddy-millet 380 310 30 40

5.1. Rice Seeding and Weed Segmentation Dataset

This dataset is provided by [5] and contains a total of 224 images of size 912 × 1024 which were
captured using a Canon IXUS 1000 HS (EF-S 36–360 mm f/3.4–5.6 IS STM) camera. Each image came
with a corresponding ground truth-annotated label with two classes: rice and Sagittaria trifolia weed,
which is quite harmful to rice crops [28]. Among 224 total images, 160 images were used for training,
20 for validation, and 44 for testing. The dataset is publicly available at: https://figshare.com/articles/
rice_seedlings_and_weeds/7488830.

5.2. BoniRob Dataset

An autonomous robot, named BoniRob [4] was used to collect this dataset in 2016 from fields
near Bonn, Germany. The BoniRob dataset contains sugar beet plants, dicot weeds, and grass weeds.
For the experiments, we used a subset of the BoniRob dataset containing sugar beets and grass weeds;
492 images of size 1296 × 966 were used, divided into training (400), validation (30), and holdout test
(62). This dataset is publicly available at: http://www.ipb.uni-bonn.de/data/sugarbeets2016/.

5.3. Carrot Crop and Weed

The carrot crop and weed dataset contains a total of 60 images of the size 1296 × 966 and was
introduced by [6]. Images were captured using the JAI AD-130GE camera model from organic carrot
fields in a region of northern Germany. Annotation of ground-truth labels of weeds and crops were
conducted manually. Among 60 images 45, 5, and 10 were used as training, validation, and testing
respectively. The dataset can be found at: https://github.com/cwfid.

5.4. Paddy-Millet Dataset

The paddy-millet dataset is acquired from [7] and contains a total of 380 images of size 804 × 604
which are captured using a handheld Canon camera EOS-200D. The paddy and millet weeds have a
similar appearance so it’s a very challenging dataset and the goal is to identify and localize the paddy
and weed location using semantic graphics. The semantic graphics is the idea of labeling an area of
interest with minimum human labor. In our experiments, we have manually assigned a solid circle to

https://figshare.com/articles/rice_seedlings_and_weeds/7488830
https://figshare.com/articles/rice_seedlings_and_weeds/7488830
http://www.ipb.uni-bonn.de/data/sugarbeets2016/
https://github.com/cwfid
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the base of paddy and millet weed and the rest of the pixels are counted as background. We have used
380 images of this dataset and are distributed as 310 for training, 30 for validation, and 40 for testing.

6. Experimental Results and Discussion

All experiments mentioned in this paper were performed using a PC equipped with an NVIDIA
Titan XP GPU. We used the Keras framework with a Tensorflow backend. Both quantitative and
qualitative results of CED-Net and other state-of-the-art networks were compared for all datasets.
Table 2 shows the number of parameters for the different architecture used in this paper. Observe that
the proposed architecture has a smaller number of parameters compared to others: almost 6 times less
than U-Net and SegNet, and 3 times fewer parameters than FCN-8s and DeepLabv3.

Table 2. Total number of parameters for different architectures (bold number represents the best results
in the table).

Architecture Total Params (in million)

U-Net 31.04
SegNet 31.24
FCN-8s 16.49

DeepLabv3 17.56
Proposed (CED-Net) 5.41

6.1. Rice Seeding and Weed Segmentation

For quantitative analysis, between the proposed CED-Net and other networks on rice seeding
and weed dataset, we computed different metrics such as intersection over union (IoU) individually
for each class (i.e., weed IoU and crop IoU) and mean intersection over union (mIoU) for both classes
together, F1-score and sensitivity. For every evaluation index, our proposed CED-Net outperforms
other networks with distinctive margins. Table 3 summarizes the segmentation performance of our
proposed architecture against each evaluation metric and all other networks.

Table 3. Comparison of evaluation metrics for rice seeding and weed dataset (bold number represents
the best results in the table).

Architecture Crop IoU Weed IoU mIoU F1-Score Sensitivity

U-Net 0.5879 0.6267 0.5967 0.7474 0.6370
SegNet 0.6736 0.6760 0.6741 0.8053 0.7613
FCN-8s 0.5430 0.5652 0.5478 0.7078 0.5640

DeepLabv3 0.6796 0.6638 0.6760 0.8067 0.7513
CED-Net (proposed) 0.7088 0.7170 0.7105 0.8308 0.7995

The experimental results of all the networks for the rice seeding and weed dataset are shown in
Figure 4. The column on the far left shows input images for each network; the result is shown on the
input image, with red indicating the Sagittaria trifolia weed and blue the rice crop. The proposed
network performed well in differentiating between weeds and crops, whereas the other architectures
were at times unsuccessful in assigning the label to pixels, which explains their higher FN rates
(SegNet, 3.13%; U-Net, 4.76%; FCN-8s, 5.72%, and DeepLabv3, 3.2%) compared to the proposed
network (2.63%), as mentioned in Table 4.
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Table 4. Confusion matrices of SegNet, U-Net, FCN-8s, DeepLabv3, and proposed CED-Net for rice
seeding and weed dataset.

SegNet U-Net

n = 70,647,808 Predicted: YES Predicted: NO n = 70,647,808 Predicted: YES Predicted: NO

Actual: YES TP = 7,060,518 FN = 2,213,496 Actual: YES TP = 5,908,166 FN = 3,365,848

Actual: NO FP = 1,199,162 TN = 60,174,632 Actual: NO FP = 626,197 TN = 60,747,597

Proposed CED-Net
n = 70,647,808 Predicted: YES Predicted: NO
Actual: YES TP = 7,414,952 FN = 1,859,062
Actual: NO FP = 1,160,842 TN = 60,212,952

FCN-8s DeepLabv3

n = 70,647,808 Predicted: YES Predicted: NO n = 70,647,808 Predicted: YES Predicted: NO

Actual: YES TP = 5,231,318 FN = 4,042,696 Actual: YES TP = 6,967,874 FN = 2,306,14
Actual: NO FP = 274,874 TN = 61,098,920 Actual: NO FP = 1,032,689 TN = 60,341,105

6.2. BoniRob Dataset Segmentation

For this dataset, 62 images were used as testing samples, and comparative quantitative analysis was
performed as shown in Table 5. Proposed CED-Net outperforms U-Net, SegNet, FCN-8s, and DeepLabv3
for crop IoU, mIoU, and F1-score metric. However, U-Net performs marginally better over weed IoU
and sensitivity metrics with 6 times higher parameters than the CED-Net.

Table 5. Experimental results of the proposed approach for BoniRob dataset as opposed to other
architectures (bold number represents the best results in the table).

Architecture Crop IoU Weed IoU mIoU F1-Score Sensitivity

U-Net 0.9023 0.7266 0.8274 0.9055 0.9129
SegNet 0.8417 0.6175 0.7411 0.8513 0.8248
FCN-8s 0.8743 0.5022 0.7245 0.8402 0. 7337

DeepLabv3 0.9230 0.6834 0.8257 0.9045 0.8665
CED-Net (proposed) 0.9179 0.7149 0.8344 0.9097 0.8968

It can be seen from the SegNet column that it often misclassifies the crop label with weed whereas
the better performance is obtained from CED-Net. The confusion matrices from Table 6, show that the
proposed CED-Net has ~1.7 times, ~2.5 times, and ~1.3 times less false negatives (FN) than SegNet,
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FCN-8s, and DeepLabv3 respectively, and marginally higher than U-Net. The qualitative results of the
BoniRob dataset for all the networks are shown in Figure 5.

Table 6. Confusion matrices of SegNet, U-Net, FCN-8s, DeepLabv3, and proposed CED-Net for
BoniRob dataset.

SegNet U-Net
n = 99,549,184 Predicted: YES Predicted: NO n = 99,549,184 Predicted: YES Predicted: NO
Actual: YES TP = 3,796,991 FN = 806,115 Actual: YES TP = 4,202,492 FN = 400,614

Actual: NO FP = 520,048 TN = 94,426,030 Actual: NO FP = 475,841 TN = 94,470,237

Proposed CED-Net
n = 99,549,184 Predicted: YES Predicted: NO
Actual: YES TP = 4,128,345 FN = 474,761
Actual: NO FP = 344,371 TN = 94,601,707

FCN-8s DeepLabv3

n = 99,549,184 Predicted: YES Predicted: NO n = 99,549,184 Predicted: YES Predicted: NO

Actual: YES TP = 3,377,705 FN = 1,225,401 Actual: YES TP = 39,88,677 FN = 614,429
Actual: NO FP = 58,716 TN = 94,887,362 Actual: NO FP = 227,169 TN = 94,718,909Electronics 2020, 9, x FOR PEER REVIEW 10 of 16 

 

Input Target CED-Net U-Net FCN-8s SegNet DeepLabv3 

 

Figure 5. Semantic segmentation results for BoniRob dataset. 

Table 6. Confusion matrices of SegNet, U-Net, FCN-8s, DeepLabv3, and proposed CED-Net for 
BoniRob dataset. 

SegNet  U-Net 
n = 

99,549,184 
Predicted: YES 

Predicted: 
NO 

 n = 
99,549,184 

Predicted: YES 
Predicted: 

NO 

Actual: YES TP = 3,796,991 FN = 806,115  
Actual: 

YES 
TP = 4,202,492 

FN = 
400,614 

Actual: NO FP = 520,048 
TN=94,426,0

30 
 

Actual: 
NO 

FP = 475,841 
TN = 

94,470,237 
  Proposed CED-Net   

  n = 99,549,184 Predicted : YES 
Predicted: 

NO 
  

  Actual : YES TP = 4,128,345 FN = 474,761   

  Actual : NO FP = 344,371 
TN = 

94,601,707 
  

FCN-8s  DeepLabv3 
n = 

99,549,184 
Predicted: YES 

Predicted: 
NO 

 
n = 

99,549,184 
Predicted: YES 

Predicted: 
NO 

Actual: YES TP = 3,377,705 
FN = 

1,225,401 
 

Actual: 
YES 

TP =39,88,677 
FN = 

614,429 

Actual: NO FP = 58,716 
TN = 

94,887,362 
 

Actual: 
NO 

FP = 227,169 
TN = 

94,718,909 

6.3. Carrot Crop and Weed Segmentation 

The carrot crop and weed dataset is a small dataset, containing only 60 out of which 10 were 
used as a test set. The evaluation metrics of proposed CED-Net and other comparing architectures 
are listed in Table 7. Except for the sensitivity metric, the CED-Net outperforms all other comparing 
networks with huge margins. However, CED-Net marginally underperforms than SegNet over 
sensitivity metric as SegNet generates the highest number of TP’s (2.6% compared to CED-Net 2.5%), 
a lower number of FN’s (0.33% as compared to CED-Net 0.48%) but SegNet produces 8 times more 
FP’s than CED-Net which reduces its overall performance as shown in Table 8. In the U-Net case, it 

Figure 5. Semantic segmentation results for BoniRob dataset.

6.3. Carrot Crop and Weed Segmentation

The carrot crop and weed dataset is a small dataset, containing only 60 out of which 10 were used
as a test set. The evaluation metrics of proposed CED-Net and other comparing architectures are listed
in Table 7. Except for the sensitivity metric, the CED-Net outperforms all other comparing networks
with huge margins. However, CED-Net marginally underperforms than SegNet over sensitivity metric
as SegNet generates the highest number of TP’s (2.6% compared to CED-Net 2.5%), a lower number of
FN’s (0.33% as compared to CED-Net 0.48%) but SegNet produces 8 times more FP’s than CED-Net
which reduces its overall performance as shown in Table 8. In the U-Net case, it generates the lowest
number of FP’s (19,138) but its performance is penalized by a higher number of FNs (111,531).
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Table 7. Evolution of proposed architecture compared with other networks (bold number represents
the best results in the table).

Architecture Crop IoU Weed IoU mIoU F1-Score Sensitivity

U-Net 0.7775 0.6661 0.7406 0.8510 0.7699
SegNet 0.5276 0.5717 0.5394 0.7008 0.8877
FCN-8s 0.6208 0.5411 0.5931 0.7446 0.6695

DeepLabv3 0.7550 0.6144 0.7074 0.8286 0.7581
CED-Net (proposed) 0.8120 0.7016 0.7761 0.8739 0.8385

Table 8. Confusion matrices of SegNet, U-Net, FCN-8s, DeepLabv3, and proposed CED-Net for carrot
crop and weed dataset.

SegNet U-Net
n = 16,056,320 Predicted: YES Predicted: NO n = 16,056,320 Predicted: YES Predicted: NO

Actual: YES TP = 430,309 FN = 54,434 Actual: YES TP = 373,212 FN = 111,531

Actual: NO FP = 312,887 TN = 15,258,690 Actual: NO FP = 19,138 TN = 15,552,439

Proposed CED-Net
n = 16,056,320 Predicted: YES Predicted: NO
Actual: YES TP = 406,497 FN = 78,246
Actual: NO FP = 39,020 TN = 15,532,557

FCN-8s DeepLabv3

n = 16,056,320 Predicted: YES Predicted: NO n = 16,056,320 Predicted: YES Predicted: NO

Actual: YES TP = 324,555 FN = 160,188 Actual: YES TP = 367,505 FN = 117,238
Actual: NO FP = 62,454 TN = 15,509,123 Actual: NO FP = 34,715 TN = 15,536,862

The proposed CED-Net performed better than any other network for most evaluation indices
and can compete with other networks by predicting the minimum number of FPs and FNs while
increasing the number of TPs and TNs. Figure 6 illustrates a qualitative comparison for all the networks.
The proposed network performed well in classifying weed pixels, although in some cases it was unable
to assign a label to crop pixels; thus, its IoU is lower for crops than for weeds. The SegNet column
shows that it was unable to differentiate boundaries well, indicated by its high FP rate.
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6.4. Paddy-Millet Dataset

The quantitative performance for this dataset is measured using AP for weed and rice, mAP,
and TDR. In the paddy-millet dataset, stamping-out is one of the most effective and environment-friendly
techniques to remove the millet weed from rice crops. For the stamping-out technique, finding the
class (i.e., millet or weed) and location of the weeds is more important than finding the area covered
by them. Since the coordinates of the location of millet weeds and paddy have higher significance,
hence it is more useful to find the center point of the detections. Thus, for this dataset, we used TDR,
AP, and mAP as evaluation metrics to analyze the performance of the network.

A prediction provided by the network is to be classified as TP, FN, or FP where the category is
classified using the Euclidian distance between the centers of prediction and ground truth. If the
Euclidian distance between the centers of prediction and ground truth is less than a pre-defined
threshold it is counted as TP. However, if the distance is greater than the threshold, two penalties
are imposed on the network: (1) detection at the wrong location (FP) and (2) missing of the ground
truth (FN). True detection rate (TDR) values are computed using Equation (6) which determines the
performance of the network to identify crops (paddy) and the weeds (millet) locations within the
defined threshold. Table 9 shows the TDR values of the proposed CED-Net along with comparing
networks and illustrates that the proposed network outperforms all other networks with significantly
fewer parameters.

Table 9. Results using true detection rate (TDR) variants, the number next to the TDR represents
different threshold levels (bold number represents the best results in the table).

Approach TDR: 10 TDR: 15 TDR: 20

U-Net 0.3716 0.5468 0.6193
SegNet 0.3957 0.5649 0.6767
FCN-8s 0.4018 0.5981 0.6888

DeepLabv3 0.3806 0.6223 0.7401
CED-Net 0.4531 0.6314 0.6918

For further evaluation, we also provided the results in terms of AP for weeds, AP for paddy,
and mAP. Precision is defined as the capability of a model to locate relevant objects only and recall is
true positive detections relative to all ground truths. The 11-points interpolation is used to find AP
(see Equation (9)) for each class (i.e., rice crops and millet weeds) separately and mAP is computed
(from Equation (10)) with N = 2 (number of classes). Table 10 illustrates the AP for weed, rice, and mAP
results. The proposed CED-Net has the highest mAP for all threshold and can detect most of the millet
weeds and rice crops as compared to the other networks as listed in Table 10. The qualitative results
for the paddy-millet dataset are presented in Figure 7.
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Table 10. Results using average precision (AP) and mean average precision (mAP) variants, the number
next to the AP/mAP represents different threshold levels (bold number represents the best results in
the table).

Approach
mAP:10 mAP:15 mAP:20

Rice AP:10 Weed AP:10 Rice AP:15 Weed AP:15 RiceAP:20 Weed AP:20

U-Net
0.13916 0.37254 0.4490

0.14150 0.1368 0.3449 0.4001 0.4492 0.4487

SegNet
0.2302 0.4278 0.5576

0.2109 0.2494 0.3864 0.4692 0.5255 0.5897

FCN-8s
0.2187 0.4280 0.5418

0.1505 0.2870 0.4225 0.4336 0.5591 0.5245

Deeplabv3
0.1405 0.3796 0.5276

0.1552 0.1257 0.4389 0.3204 0.6041 0.4512

CED-Net
0.3023 0.4913 0.5570

0.3698 0.2367 0.5175 0.4651 0.6228 0.4913
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7. Conclusions

This paper presents a small-cascaded encoder-decoder (CED-Net) architecture to detect and extract
the precise location of weeds and crops on farmland using semantic segmentation. The proposed
network has comparatively less number of parameters compared to the other state-of-the-art
architectures, thus results in lesser training and inference time. The improved performance of CED-Net
is attributed to its coarse-to-fine approach and cascaded architecture. The network architecture is
extended to two levels, at each of which two small encoder-decoder networks are trained independently
in parallel, (i.e., one for crop predictions and the other for weed). At each level, the network aims either
to predict a binary mask for crops or weeds. The predictions of Level-1, are further refined by Level-2
encoder-decoder networks to generate the final output. Thus, four small networks were trained,
with two arranged in cascaded for each target (i.e., crops and weeds). To evaluate and compare the
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performance of the proposed CED-Net with other networks, we used four different publicly-available
crops and weeds datasets. The proposed network has 1/5.74, 1/5.77, 1/3.04, and 1/3.24 times fewer
parameters than U-Net, SegNet, FCN-8s, and DeepLabv3 respectively, which makes it more robust and
hardware friendly compare to the other networks. Moreover, CED-Net either outperforms or is on par
with other state-of-the-art networks in terms of different evaluation metrics such as mIoU, F1-score,
sensitivity, TDR, and mAP.
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